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A Simple Batch Epidemic Process

by

L. Billard, H. Lacayo § N. A. Langberg
Florida State University

SUMMARY
A simplifying assumption for an epidemic process is that at most one person
may become infected at any one time. However, it is quite conceivable that when an
infected person makes simultaneous contact with two people, both could become in-
fected. In this note we introduce the concept of a batch epidemic process in which
infection can occur in batches of one or two. The distribution of the number of
infectives present at any time is derived. The concept can be extended to in-

clude batches of any size.
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1. INTRODUCTION

The simple epidemic model describes the process in which a population of
fixed size N consists of susceptibles and infectives. A basic assumption is
that at any particular instant in time at most one susceptible individual can
become infected. However, it is quite conceivable that when an infected person
makes simultaneous contact with two people both could become infected. More
generally, susceptibles could become infectives in batches of any size. For
simplicity, we shall consider here the case in which infection occurs in batches

of one or two with probability a and (1 - a) respectively.

Let Y(t) denote the number of infectives at time t. The infinitesimal
transition rates for our model are given by

Prfx(t +h) = x + 1IX(t) = x} = auh+o(h) 3

Pr{X(t + h) = x + 2|X(t) = x} = (1 - q)uxh + o(h)

and P (1)

Pr{X(t + h) = x|X(t) = x} =1 - uxh + o(h) 1

where ﬁx. x =1, ..., N, are arbitrary but distinct infection rates. In the
classical simple epidemic model, a = 1 and My E Bx(N - x) where 8 is the rate
of infection. In this work we find expressions for the probability distribution
of X(t) for the above simple batch epidemic process. Note that the underlying
model, from (1), satisfies the Chapman-o!mcgorov equations

pa(t) = -up (t) + au ,p. (t) + (1 - Qdu op, H(t), e
forn=1, ..., N with ", " 0 for n 2 Nor n <1 and where

/
Py (t) = PriX(t) = n}
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2. SOME PRELIMINARIES

Recently, Billard Lacayo and Langberg (1979) found a compact derivation
for the classical simple epidemic process by focusing on the interinfection
time between successive occurrences of infectives. The probability distribu-
tion for the number of infectives present at any time t was expressed in terms
of a linear combination of exponential terms with parameters (uxt) where My is
defined as in Section 1. Since in the classical model infectives occur in
batches of one only, the patn followed by successively occuring values of x is
simply 1, 2, ..., N. However, when infectives can occur in batches of one or
two, there are many possible paths that can be followed. Accordingly, we intro-
duce some notation to describe the path possibilities.

Let Mps =oes Mo be distinct positive real numbers. Define M(n, i, j) as
the set of all subsets of {ui+l' $éey un_l} with j of them deleted but such
that no two deleted elements have consecutive subscripts. Thus, for example,

M6, 1, 2) = {(u,y, M), (Mq, ug), (Hqy M)} Let A= (u, , M, , «ovp M )
2’ "4 3 T4 3255 vy’ v, vn-i-j-l

denote a typical element of M(n, i, j). In essence, if we are given i infec-
tives, the subscripts of the components of A represent a particular path fol-
lowed to reach the state corresponding to n infectives. Since the end points,
i and n, are always present, these subscripts are suppressed. For example,

Figure 1 indicates the possible paths from i = 1 to n = 8 whenever j = 3 jumps

of size 2 occur.
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FIGURE 1

Paths for M(8, 1, 3)
Note that, in general, j = 0, 1, ..., [(n-i)/2) where [x] is the greatest inte-
ger less than or equal to x. Let us further define M(n, i, j; "n-l) to be

those elements A of M(n, i, j) such that u €A, and let M(n, i, j; u _,) be

n-1

similarly defined. Thus, in our example, M(8, 1, 3; u,) equals {(gs. Mg u7)}
since only cne path of M(8, 1, 3) contains Hqe Let

A, - noow,/(u, = w) (3)
¢(n i) Azu(n,i.j) ueA U/ (hy = ¥

Finally, let ¢(n, i, j; "n-l) be the sum of those terms of ¢(n, i, j) that
have U, 188 the factor of maximal subscript, with ¢(n, i, j; "n-z) similarly
defined.

Lemma 1

For distinct positive real numbers Mps sees Wy

o 1,4, ) =y - w0 4, ) v 0 s L L - @)

where ¢(n, i, j) is defined as in (3).
Proof.

Since by definition the sets A of M(n ¢+ 1, i, j) cannot have both Wy and

Mn-1 deleted, it follows that

|
|
|
i
|
1



¢(n+ 1,41, j) =¢(n+1,i, j; lln) +dme+ 1,1, ); "n-l) (s)

Now,

n oGy, - up”

-1 =1
. vi, ) . ~h o
U Cip= g e, 1, 3) = o (uy - oy wg(n.id) uysA

-1 -1
.Azu(n.i'j) "n("n s ui) VSCA“V(“V - Vi) } .

Clearly, each bracketed term in this summation corresponds to a term in

¢(n+ 1,1, j; W,). Hence,

My = w0 7N, 4, ) = 0 e 1, 4, 55 w) 6)
Similarly, we can show

TN(CRICER R TUI ME WS IR IR TC I WS I

Thus, the result follows readily.
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3. A SIMPLE BATCH EPIDEMIC
Let us now present the probability distribution of X(t) the number of infectives.
Theorem 1
Consider a simple batch epidemic in a closed population of size N with transi-
tion probabilities as given in (1). Assume the paraneters u i=1, ..., Nare
distinct and that X(0) = 1. Then, the probability distribution of the number of

infectives present at time t is

: ¥ t = Y 7
TR ¢ W e ”
j=] ™
where
;
b RE ol 1
Wy  RGReRIIY gl L N el B
d“.’. - —u“_-_i: jio 1 a)’a ¢(n, i, j), n=2, ..., N, } 8)
nil
8 - » nes 2. seey N.
o "l e J

and where the ¢(n, i, j) are defined in (3), and where dn ns 0 whenever m > n.
»

Proof.
i The result for n = 1 is clearly true.
b § We prove the result for n = 2, ..., N by induction. We first take n = 2,

i Substituting n = 2 into equation (2), we obtain

u,t

¥y uzt
Pa(t) = lany/(u; - uy)le

- [0“1/ (U2 - "l) Je .
Equation (8) implies the result is true for n = 2,

Now assume the result is true forn = 3, ..., n - 1. We wish to check the case

n = n., Solving (2) for n = n, by using the integrating factor oxp(unt). and (7)

forn - 1, n - 2vwe obtain




-6 -

n-1 -uit
Pp(t) -121 Caby_19n1,i% (= D8y z,33/0y - uyde
: (%)
n-1 -unt
¢ L CTovngdng,g * Q- el pdy o Wy - udpe T
i.l » ’

Thus, to prove the result, we need only show that the coefficient of exp(-uit) in

(9) is indeed dn,i' To do this we substitute for dn-l and dn-z,i using (8)

’i
which were assumed to be true. Let us assume n - i = 2m + 1 is odd. (The
proof is analogous for n - i even). Thus, on a proper rearrangement of the terms,

the coefficient of exp(-uit) becomes

u.d u
174 | - - SN
L e | ¥n-

i
[(n-i)/2] i-2i] Vn- M.
j nei-2j 1 . 2 £s
+ ' B e (0 = 1, &, J) ¥ ——————(n -2, 1, j - 1)
jgl s el b B “n-2 T ¥

But, from (6) and (3), we have

"n-ll(un_l - ul)O(n -1,1i, 0) = ¢(n, i, o, un)
(10)
= ¢(n, i, 0).

Substituting (10) and using Lemma 1, yields the result for n = n, and the theorem is
proved.

Note that the coefficients dn i satisfy the following recursive relationship
» .

dyg = lowp pdp ) g ¢ (= aduy od o Wi - wg), i1, e, N

with dn,m = o vaenever m > n. ‘This follows iwaediatcly irom (9).
With the expressions for the probability distribution, we may now derive other

quantities of interest, such as the mean number of infectives, duration time of the

epidemic, the size of the epidemic, etc.
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